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Transmission Line Matrix Modeling of
Dispersive Wide-Band Absorbing
Boundaries with Time-Domain
Diakoptics for S-Parameter

- Extraction
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Abstract — A numerical modeling procedure based on Johns’s time-
domain diakoptics approach has been developed for efficient transmission
line matrix (TLM) analysis of two-dimensional microwave circuits by
introducing space interpolation techniques. Frequency dispersive bound-
aries are represented in the time domain by their characteristic impulse
response or numerical Green’s function (Johns matrix). Almost perfect
wide-band absorbing boundary conditions have been obtained with this
technique, permitting accurate characterization of waveguide discontinu-
ities and components. The application of these techniques saves consider-
able computer run time and memory when compared with conventional
TLM analysis.

I. INTRODUCTION

HE TRANSMISSION line matrix (TLM) method is a

numerical time-domain technique first described by
Johns and Beurle [1] in which both space and time are
discretized. The details of this method and an extensive list
of references on this subject can be found in a review
paper [2] and a book chapter on TLM [3] by Hoefer. New
concepts and procedures which were developed to speed
up TLM modeling were reported in [4]. The TLM method
is very general in that it can cover arbitrary geometries and
account for realistic features that are often neglected in
theoretical analysis. The earlier applications of this method
have concentrated mainly on finding the cutoff frequencies
and propagation characteristics of transmission lines and
resonant frequencies of cavities.

Only a few attempts have been made so far to compute
scattering parameters with this method, since wide-band
absorbing boundaries cannot be modeled in the time do-
main, particularly in structures supporting non-TEM
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modes of propagation. However, in the absence of a wide-
band absorbing termination, the impulse excitation capa-
bility, which is one of the main assets of the TLM method,
cannot be exploited. Furthermore, the wide-band absorb-
ing boundaries must be of high quality since the Fourier
transform of time-domain results is very sensitive to im-
perfect boundary treatment. Small errors in the time do- -
main may produce fairly large errors in the frequency
domain. Thus, even though the time-domain results may
be reasonably accurate, the frequency-domain results ob-
tained from their Fourier transform may not be acceptable
as useful data. Therefore, simulation of good absorbing
boundary conditions is very important for computation of
S parameters.

Recently, absorbing boundary algorithms for the time
domain—finite difference (TD-FD) method have been pro-
posed in the literature [5]-[7). In [7], even though the
authors claimed less than 0.02% reflections from an ab-
sorbing boundary at a particular (tuning) frequency, they
obtained less than 1% reflections only over a narrow
bandwidth of 7.7% (center frequency (Al /A) = 0.09, band-
width (Al/A)=0.007) for TE,, mode propagation in a
standard rectangular waveguide (A/ being the TLM mesh
parameter and A the free-space wavelength). In contrast,
we have achieved less than 2% of reflections over the whole
operating band of the waveguide with the method pre-
sented in this paper.

In the following, two different ways of modeling wide-
band absorbing boundary conditions (matching termina-
tions) in homogeneous waveguides will be described. Effi-
cient implementations of wide-band absorbing boundaries
using Johns’s time-domain diakoptics approach with space
interpolation techniques are presented in Section III. Then
results for certain waveguide discontinuities and compo-
nents computed with these techniques are presented in
Section IV.

0018-9480,/90 /0400-0379$01.00 ©1990 IEEE
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Fig. 1. Plane wave incident at an arbitrary angle 8.

[I. MODELING OF WIDE-BAND ABSORBING
BouUNDARY CONDITIONS

In the two-dimensional TLM simulation of a plane
TEM wave, an absorbing boundary can be modeled by
terminating the TLM mesh lines with the intrinsic
impedance of the TLM mesh, Z;/ \/Z , where Z, is the
characteristic impedance of the mesh lines and ¢, is the
relative permittivity of the simulated medium. This tech-
nique works well at all frequencies as long as the plane
TEM wave is incident normally on the absorbing bound-
ary and, of course, A//\ is much smaller than unity.
For a plane wave incident at an arbitrary angle § (as in
the case of waveguide modes, see Fig. 1), the mesh lines
must be terminated with dispersive wave impedances
Zy/\2¢,(1—sin’@) , where ¢, is the relative permittivity
of the medium filling the propagation space. Since this
impedance is a function of the angle of incidence @, the
termination is totally absorbing only at one frequency.

To simulate absorbing boundaries over a wide frequency
range in waveguides, we have employed two different
approaches:

a) modeling of a waveguide termination with gradually
increasing losses,
b) modeling of a very long uniform waveguide section.

A. Modeling of a Waveguide Termination with Gradually
Increasing Losses

Practical waveguide terminations are made by arranging
for the gradual absorption of the incident wave. A tapered
resistive sheet or pyramid gradually increases the effective
attenuation constant in the termination. Provided that the
taper is made several wavelengths long, the reflection is
very small. An alternative approach, more appropriate for
modeling purposes, is to realize the termination by cascad-
ing a number of uniform lossy sections of waveguide as
shown in Fig. 2(a). The loss tangent of the sections is
progressively increased in such a way that reflection
is minimized over a wide frequency range. We have ob-
tained the required optimum loss profile using Touch-
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Fig. 2. (a) Modeling of a wide-band absorbing waveguide termination
by a cascade of nine increasingly lossy line sections. (b) Optimized
lengths and dielectric loss tangents for a matched WR28 load (TE,
mode)
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Fig. 3. Return loss of the lossy waveguide termination in Fig. 2:
simulation using Touchstone; - - - - - - simulation using TLM method.

stone™ CAD software. About nine sections of different
lengths and loss tangents (the dielectric loss tangent is
taken as the variable quantity) are needed to obtain a
return loss of less than —40 dB over the operating band of
a standard rectangular waveguide. The optimized lengths
and dielectric loss tangents are given in Fig. 2(b). For a
WR28 waveguide, the total length of the termination which
consists of nine sections is 42.58 mm (=3.785A, at the
center frequency of the operating band). The return loss
obtained with Touchstone is shown in Fig. 3. It is less than
—40 dB throughout the operating band of the WR28
waveguide. The simulation of this lossy matched wave-
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guide termination with the TLM method is described
below.

Simulation of the Lossy Waveguide Termination with the
TLM Method: A TLM calculation usually starts by excit-
ing the mesh at specific points by voltage or current
impulses and follows the propagation of these impulses
over the mesh as they are scattered by the nodes and
bounce back at boundaries. Each iteration corresponds to
a unit time Az required for a pulse to travel from one node
to the next. The output which is taken from a chosen point
is a series of discrete impulses of varying magnitude sepa-
rated by constant time intervals. This output function
corresponds to a discrete sampling of the E field or H
field (depending on the voltage or current) in the time
domain. The frequency response (within any frequency
range A/ /A much smaller than unity) can be obtained by
performing the discrete Fourier transform on the output
function. The TLM algorithm may be expressed as

k+1[V]r=Sk[V]l+k[V]s (1)

k+1[V]I=Ck+1[V]r (2)

where V' and V7 are the incident and reflected impulses at
the ports around the nodes at time step k Az, S is a block
diagonal scattering matrix for all nodes in the network, C
is a connection matrix describing the topology of the
network, and V* is a source vector.

To account for dielectric losses, one can either consider
the TLM mesh to consist of lossy mesh lines or load the
nodes of a lossless mesh with so-called loss stubs [2], [3].
The latter approach has been adopted for our study, where
each node is resistively loaded with a matched transmis-
sion line of appropriate characteristic admittance g,, ex-
tracting energy from each node at every iteration. The
values of g, are directly proportional to the local loss
tangent and, for a lossy dielectric, can be derived as
follows:

(3)

The conductivity, o, of the medium and the equivalent
attenuation constant, «, of the mesh lines can be expressed
as follows:

¢
e=¢p, + —=¢.€,(1— jtans).
Jw

gocC 8o
_ - 4
Y, “T 4Al, “)

where g, is the normalized characteristic admittance of the
loss stubs (normalizing admittance being the characteristic
admittance of the main mesh lines) and A/ is the distance
between nodes. The attenuation constant, a,, of the net-
work is

Np,/m

8o
a,= W Np/m. (5)

The attenuation constant for dielectric losses can be writ-
ten as [8]
W€ €, Atan d

= (6)

4
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Fig. 4. Configuration for computing the discrete numerical Green’s
function or Johns matrix of a lossy waveguide matched termination.

where A is the wavelength in the dielectric. From (5) and
(6), g, follows:

2¢, /2 mfAltan$

Bo=— .

(7)

If tand and Al are known, g, can be computed. The
frequency can be taken as the midband frequency since g,
does not change very much across the operating band of
the waveguide. The only condition for (5) to (7) to be true
is that

a, Al <1. (8)
The TLM discretization of a matched termination (of
Fig. 2) is shown in Fig. 4. Note that all boundaries are
placed halfway between nodes to ensure time synchronism
of impulses throughout the TLM mesh. The quantities g;
and g, are the characteristic admittances of the loss stubs
of sections 1 and 9, respectively. To satisfy the condition
given by (8) and to keep the velocity error to a tolerable
level, the width of the waveguide is discretized into 30A/
(i.e., N =30 in Fig. 4), and about 180A/ are needed along
the length to realize a WR28 waveguide matched termina-
tion (shown in Fig. 2(a)). The return loss obtained with a
TLM simulation is given in Fig. 3. A minimum of 32 dB is
obtained over the operating band of WR28 waveguide.
That means the reflections off the absorbing boundary
(input plane of the matched termination) are less than
2.5%. This proves the ability of the TLM method to
properly account for the losses. The results can be further
improved with finer discretization and more iterations.

B. Modeling of a Very Long Uniform Waveguide Section

In this approach, the wide-band termination is repre-
sented by a very long waveguide section, and computations
are stopped before the reflections from the far end return
to the reference plane. For example, for a computation
covering 2000 iterations, we need to discretize a waveguide
section which is 1000A/ long.

To compute the scattering parameters of a microwave
two-port over a wide frequency band in a single TLM run,
we need two absorbing boundaries, one at each port. If we
wanted to include the absorbing TLM structures described
above, the total additional length to discretize two absorb-
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ing boundaries using approach A would be about 4004/,
while for approach B it would be about 4000A/ (for a
computation requiring 4000 iterations). That means we
need enormous computer run time and memory to achieve
the above absorbing boundaries with the conventional
TLM algorithm. However, these problems can be solved
effectively with less computer resources by using diakop-
tics and space interpolation techniques as described in the
next section.

III. IMPLEMENTATION OF WIDE-BAND ABSORBING
BOUNDARY CONDITIONS WITH JOHNS’S
TiME-DOMAIN DIAKOPTICS APPROACH

A. Diakoptics Technique

Diakoptics (or segmentation) is a method of partitioning
large structures into substructures which are solved inde-
pendently and later reassembled. It is very attractive for
the repeated analysis of large structures in which only a
small subpart is changed from one problem to another.
For example, during the optimization of planar and quasi-
planar circuits, only the metallization part is changed, the
homogeneous dielectric regions remaining unchanged. It is
wasteful to analyze the entire structure every time a small
change is made.

The method was originated by Kron [9] and has since
been applied extensively in conjunction with frequency-
domain methods [10]-[12]. For example, complicated two-
dimensional planar components can be analyzed by seg-
menting them into regular shapes for which the analytical
Green’s functions are known. However, there are only a
few regular shapes, and these applications are thus limited
to certain standard regular geometries. The technique was
extended to the time domain for TLM modeling by Johns
and Akhtarzad in 1981 [13], [14]. They showed how the
substructures may be solved in the time domain using the
TLM method and how the reconnection is made. Since the
characteristic impulse response (which can be interpreted
as a numerical Green’s function) of the substructures must
be computed and stored, the extra dimension of time
associated with the TLM method vastly increases the com-
puter storage (when compared with steady-state problems).
To reduce the computational effort, Johns and Akhtarzad
proposed space approximations along the connecting inter-
face: they connected only a fraction of the TLM branches
in the interface. Using this space interpolation technique,
they computed the cutoff frequencies of simple waveguides
and ridge waveguides. Even though the computed values

compared reasonably well with analytical values, the fre-
sin{x)

quency response curve was no longer of shape but

got distorted because of loss/gain of power during the
approximate connection process.

This shows that, even though the space-approximated
diakoptics may work reasonably well for computing eigen-
values, it may introduce considerable errors in the compu-
tation of scattering parameters. For this reason, and in
view of the comparatively large computer resources which

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 38, NO 4, APRIL 1990

are required for this method, there was not much further
application of this technique.

Fortunately, the diakoptics technique can be made much
more efficient and accurate in the case of single-moded
transmission structures. Only a single removed branch in
the interface is connected, and the field values at the
remaining ports are interpolated according to the trans-
verse mode field distribution. This reduces the computer
storage and run time by a few orders of magnitude. These
procedures are described next.

B. Application to Wide-Band Absorbing Boundaries

We have used diakoptics to represent wide-band matched
terminations (shown in Fig. 4 and described in Section II)
at the input reference plane by their time-domain charac-
teristic impulse response or numerical Green’s function.
We then discretize only the circuit to be characterized and
convolve its time-domain response with the numerical
Green’s functions in the input and output reference planes
of the circuit.

The branches penetrating through the input reference
plane (also called removed branches) are numbered 1
through M = N (see Fig. 4). A single impulse injected at
any of these branches will cause impulses separated by the
iteration time interval to flow in streams out of the branches
of this structure. These impulse functions result from the
scattering at the nodes and boundaries of the structure,
and can be interpreted as a Green’s function in numerical
form. All removed branches are terminated in their own
characteristic impedance during this procedure so as to
absorb the emerging output streams. If we denote
g(m, n, k) as the output impulse function emerging at the
mth branch at 7 = k Az due to a unit excitation of the nth
branch at =0, the complete Green’s function for the
input plane of the matched load can be written in matrix
form as follows:

g(L,LK)- - - -g(1,0,K)- ~ - -g(1,N,K)
// ! // . ,/ 1
8(L,Lk)~ -~ -g(l,nk) - - - -g(1,Nk)
7 1 P . L s

- . v
8(1,1,0)- == - g(1,0,0) - - - g(1L,N,0)
i 1 . ) 1 1
B P NXK
TR
| Vg
X ,,.---:--—;‘-/-~—.—-g(m,N,k) :
AP AR P S R
N W 7 i ]
m g(nll,l,O) - - -g(mn,0) -'- - g(m,N,0) 1 ! ©)
I X . ! ! !
: ) M,N,K)
RS N g
,___I___;If.’._-l—- l/k
: pd : // : g/(M’N’ )
gM,1,0) - - -gM,n,0) - - - gM,K,0)
A

This is a three-dimensional array of dimension
(M= N=%K), where K is the total number of iterations,
and M =N is the number of branches or transmission
lines along the reference plane. We call this numerical
Green’s function a Johns matrix in honor of the late P. B.
Johns, pioneer of TLM and time-domain diakoptics [4].
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Fig. 5. Convolution of the Johns matrices of wide-band matched term-
nations with the impulse response of the circuit.

Note that the above matrix is computed only once and is
stored. The next step is to discretize the circuit to be
characterized and convolve its time-domain impulse re-
sponse with these Green’s functions (which simulate the
wide-band absorbing boundary conditions in the time do-
main) along the branches of the input and output reference
planes (see Fig. 5).

When impulses are injected into the circuit, they are
scattered at nodes and boundaries and arrive after some
time at the input and output reference planes. Any impulse
which hits a reference plane will give rise to streams of
impulses (characteristic of the matched termination) sepa-
rated by the iteration time interval that will flow back into
the structure through all branches. For example, a series of
k impulses incident on the nth branch in the output
reference plane will give rise to the following reflected
impulse voltage on the mth branch:

Vi(im,k)=V"(n,k)*g(m,n,0)
+Vi(n,k—1)*g(m,n,1)
+ oo +V(n,0)xg(m,n, k).

This can be further written as follows:

Viim, k)= Y, g(m,n, k)*V(n,k—k’). (11)
K'=0

(10)

The total reflected impulse voltage on the mth branch at
time kAt due to the impulses incident on all N branches
in previous iterations is the summation of the above term
for N branches:

Nk
Viim. k)=, Y g(m,n, k)*V'(n,k—k’). (12)
n=1k=0
The above equation forms the basis of the diakoptics
algorithm.

The TLM algorithms with and without the diakoptics
approach are shown in Fig. 6. Note the extra modules to
be implemented for convolution purposes with the diakop-
tics approach. The computer run time and memory re-
quired with the conventional TLM algorithm (i.e., to dis-
cretize the circuit and two matched terminations together)
is proportional to

(NX¢+2X NX")X N X K (13)
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Extra module to be imple-
mented for Diakoptics

while that with the diakoptics technique is

(NX*XNXK)+(KX(K+1)xN?) (14)
where NX°¢ is the number of grids along the length of the
circuit and NX" is the number of grids along the length of
a matched load. In (14), the first term corresponds to the
discretization of the circuit and the second part to the
convolution with the Johns matrices of the matched loads.

The computer resources required for convolution can be
reduced if we take the input and output reference planes
far away from the circuit or discontinuity under test, so
that we can assume only dominant mode propagation
along the uniform guide (higher order mode effects on the
transverse field distribution can be neglected). In such
cases, if we excite the circuit at all the nodes along the
input reference plane with impulses whose magnitudes are
spatially distributed according to the dominant field distri-
bution, the reflected impulses from these nodes at any
iteration will have the same spatial distribution. Hence the
impulse response of a matched load can be represented
merely by storing the reflected impulse values at any one
node for the required number of iterations. By knowing
the transverse field distribution of the propagating mode
(e.g., sin(wx /a) variation for TE,, mode propagation in
waveguides), the reflected impulses at the other nodes can
be calculated from these values. Hence the Johns matrix
G(M, N, K) becomes one-dimensional of size K, the total
number of iterations. Thus the memory size required to
store the Johns matrix is reduced by a factor of N2 and
the time taken to compute the Johns matrix is reduced by
a factor of N, where N is the total number of branches
along the reference plane.
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Note that in the convolution algorithm, we compute the
reflected impulses (given by (12)) on all N branches along
the reference planes in every iteration. The number of
required computational steps is given by the second term
of (14). However, under .the above assumption, we can
perform the convolution at only one node and calculate
the reflected impulses at all other branches according to
the spatial distribution of the dominant mode. Hence the
time and memory taken to convolve are reduced by a
factor of (N?2) and (14) becomes

(NX“X NXK)+(K x(K+1)).

Using the above technique, we have computed the re-
turn loss of the opposing absorbing boundaries (modeled
as described in subsections II-A and II-B) separated by a
length of WR28 waveguide (about 50A/ long). The return
loss obtained as 20log(VSWR —1)/(VSWR +1) is shown
in Fig. 7. It is less than — 35 dB throughout the operating
band of the WR28 waveguide for approach A, while for
approach B it is less than —30 dB, and the response is flat
as expected. The propagatlon constant, B, can be obtained
by solving

E (0,z=1L;)
L,)

where L, and L, are the distances from the origin to any
two points along the waveguide, and E, are the Fourier
transforms of E (¢) at z= L, and z = L,. For the uniform
WR28 waveguide, these 8 values agree exactly with the
analytical values over the whole operating frequency band.
Also, the phase difference of fields between any two con-
secutive nodes along the length of the waveguide is the
same. This demonstrates the excellent quality of the wide-
band absorbing boundaries.

e B Ly~ L) =

CE(w,z=

(16)

IV. APPLICATIONS

To further check the quality of the wide-band absorbing
boundary conditions and- to verify the validity of the
proposed space interpolation techniques, we have com-

(15)
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Fig. 9. . Electric field variation along the length of a waveguide contain-
ing the inductive iris discontinuity at 40A/.

puted the S parameters of an inductive waveguide iris
discontinuity and an E-plane band-pass filter. The S pa-

‘rameters over the whole operating frequency band are

computed with two TLM runs—with and without the
discontinuity present. The incident field is obtained from
analysis of a small section of the empty waveguide termi-
nated on both sides with simulated wide-band matched
terminations. The reflected field is obtained from the dif-

ference between the total field and the incident field.

Fig. 8 shows computed magnitude and phase of the S
parameters of a symmetrical inductive iris (of gap width

equal to 3.556 mm) in a WR28 waveguide. Results com-

pare well with those computed using empirical formulas
given in [15]. The electric field variation along the center
line of the waveguide around the inductive iris is shown in
Fig. 9 for five different frequencies. Note a steep dip in the
magnitude of the electric field at the discontinuity. The
fields become almost constant for all frequencies on' the
right-hand side of the discontinuity, indicating the excel-
lent quality of the matched loads. Fields vary sinusoidally



ESWARAPPA et ul.: TRANSMISSION LINE MATRIX MODELING

[4—18.8mm -»} =155 mm| |e—155 mm »|
—.4—] 7
3 mm

e

2.4 mm

B

8.2 mm

o
‘ 2.4 mm

Fig. 10. The geometry of a two-section maximum flat E-plane filter.

Q
<
2 3
o
o
=1
o o«
8-
@
g
: N
2o ]
=
=7 o5
< | © ©
S )
0'2’ o o
1 3%
c -8 <
g g
o
Q- Q
™ - ©
' ©
o
5 Q
g I U 1 S
105 109 11 - ons s
Frequency (GHz)
Fig. 11. Transmission characteristics of a E-plane filter: 1S5

computed with diakoptics; -+ - - -« §5, computed with diakoptics; A
|S51] computed with mode-matching technique (Uher); O S,; computed
with mode-matching technique (Uher).

towards the left side of the discontinuity, as expected.
Also, it can be seen that the higher order mode effect is
almost negligible beyond a distance of about 20A/ on
either side of the discontinuity.

Fig. 10 shows the geometry of a two-section maximum
flat band-pass filter [16] with the following specifications:

center frequency: 10.95 GHz
bandwidth: 218 MHz
guide width: 18.8 mm
strip thickness: 0.3 mm

The computed transmission characteristics are given in
Fig. 11. The results compare well with those computed
with the mode-matching technique.

V. CONCLUSIONS

Excellent wide-band waveguide absorbing boundary
conditions have been implemented using Johns’s time-do-
main diakoptics approach. A space interpolation technique
based on the dominant field distribution has been pro-
posed for efficient S-parameter extraction. The good accu-
racy of this technique and the quality of wide-band ab-
sorbing boundary conditions are documented by the good
agreement of the computed S parameters of waveguide
components with data obtained with other methods.
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