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Abstract —A numerical modeling procedure based on Johns’s time-

domain diakoptics approach has been developed for efficient transmission

line matrix (TLM) analysis of two-dimensional microwave circuits by

introducing space interpolation techniques. Frequency dispersive bound-

aries are represented in the time domain by their characteristic impulse

response or numerical Green’s function (Johns matrix). Almost perfect

wide-band absorbing boundary conditions have been obtained with this

technique, permitting accurate characterization of wavegrride discontinu-

ities and components. The application of these techniques saves consider-

able computer run time and memory when compared with conventional

TLM analysis.

I. INTRODUCTION

T HE TRANSMISSION line matrix (TLM) method is a

numerical time-domain technique first described by

Johns and Beurle [1] in which both space and time are

discretized. The details of this method and an extensive list

of references on this subject can be found in a review

paper [2] and a book chapter on TLM [3] by Hoefer. New

concepts and procedures which were developed to speed

up TLM modeling were reported in [4]. The TLM method

is very general in that it can cover arbitrary geometries and

account for realistic features that are often neglected in

theoretical analysis. The earlier applications of this method

have concentrated mainly on finding the cutoff frequencies

and propagation characteristics of transmission lines and

resonant frequencies of cavities.

Only a few attempts have been made so far to compute

scattering parameters with this method, since wide-band

absorbing boundaries cannot be modeled in the time do-

main,, particularly in structures supporting non-TEM
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modes of propagation. However, in the absence of a wide-

band absorbing termination, the impulse excitation capa-

bility, which is one of the main assets of the TLM method,

cannot be exploited. Furthermore, the wide-band absorb-

ing boundaries must be of high (quality since the Fourier

transform of time-domain results, is very sensitive to im-

perfect boundary treatment. Small errcrs in the time do-

main may produce fairly large errors in the frequency

domain. Thus, even though the lime-domain results may

be reasonably accurate, the frequency-domain results ob-

tained from their Fourier transform may not be acceptable

as useful data. Therefore, simulation of good absorbing

boundary conditions is very important for computation of

S parameters.

Recently, absorbing boundary algorithms for the time

domain–finite difference (TD–FD) method have been pro-

posed in the literature [5]–[7]. [n [7], even though the

authors claimed less than 0.02% reflections from an ab-

sorbing boundary at a particular (tuning) frequency, they

obtained less than 1% reflections only over a narrow

bandwidth of 7.7% (center frequency ( A1/A ) = 0.09, band-

width (A1/A) = 0.007) for TEIO mode propagation in a

standard rectangular waveguide (Al being the TLM mesh

parameter and A the free-space wavelength). In contrast,

we have achieved less than 2’% of reflections over the whole

operating band of the waveguide with the method pre-

sented in this paper.

In the following, two different ways of modeling wide-

band absorbing boundary conditions (matching termina-

tions) in homogeneous waveguides will be described. Effi-

cient implementations of wide-band absorbing boundaries

using Johns’s time-domain diakoptics approach with space

interpolation techniques are presented in Section III. Then

results for certain waveguide discontinuities and compo-

nents computed with these techniques are presented in

Section IV.
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Wave front

Absorb~g Boundary

Fig. 1. Plane wave incident at an arbitrary angle 6’.

II. MODELING OF WIDE-BAND ABSORBING

BOUNDARY CONDITIONS

In the two-dimensional TLM simulation of a plane

TEM wave, an absorbing boundary can be modeled by

terminating the TLM mesh lines with the intrinsic

impedance of the TLM mesh, ZO/~, where 20 is the

characteristic impedance of the mesh lines and c, is the

relative permittivity of the simulated medium. This tech-

nique works well at all frequencies as long as the plane

TEM wave is incident normally on the absorbing bound-

ary and, of course, A1/A is much smaller than unity.

For a plane wave incident at an arbitrary angle 6 (as in

the case of waveguide modes, see Fig. 1), the mesh lines

must be terminated with dispersive wave impedances

ZO/~~, where t, is the relative permittivity

of the medium filling the propagation space. Since this

impedance is a function of the angle of incidence 6, the

termination is totally absorbing only at one frequency.

To simulate absorbing boundaries over a wide frequency

range in waveguides, we have employed two different

approaches:

a) modeling of a waveguide termination with gradually

increasing losses,

b) modeling of a very long uniform waveguide section.

A. Modeling of a Waveguide Termination with Gradually

Increasing Losses

Practical waveguide terminations are made by arranging

for the gradual absorption of the incident wave. A tapered

resistive sheet or pyramid gradually increases the effective

attenuation constant in the termination. Provided that the

taper is made several wavelengths long, the reflection is

very small. An alternative approach, more appropriate for

modeling purposes, is to realize the termination by cascad-

ing a number of uniform lossy sections of waveguide as

shown in Fig. 2(a). The loss tangent of the sections is

progressively increased in such a way that reflection

is minimized over a wide frequency range. We have ob-

tained the required optimum loss profile using Touch-
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2 1.739 0.0112
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4 3.031 0.1162

5 3.166 0.1990

6 7.980 0.2708
7 7.990 0.3686

6 7.536 0.8907
9 6.769 0.5960
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Fig. 2. (a) Modeling of a wide-band absorbing waveguide termination

by a cascade of nine increasingly 10SSY line sections. (b) Optimized
lengths and dielectric loss tangents for a matched WR28 load (TEIO

mode)
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Fig. 3. Return loss of the lossy waveguide termination in Fig, 2: —
simulation using Touchstone; simulation using TLM method,

stoneTM CAD software. About nine sections of different

lengths and loss tangents (the dielectric loss tangent is

taken as the variable quantity) are needed to obtain a

return loss of less than – 40 dB over the operating band of

a standard rectangular waveguide. The optimized lengths

and dielectric loss tangents are given in Fig. 2(b). For a

WR28 waveguide, the total length of the termination which

consists of nine sections is 42.58 mm ( = 3.785Ag at the

center frequency of the operating band). The return loss

obtained with Touchstone is shown in Fig. 3. It is less than

– 40 dB throughout the operating band of the WR28

waveguide. The simulation of this lossy matched wave-
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guide termination with the TLM method is described

below.

Simulation of the Lossy Waveguide Termination with the

TLM Method: A TLM calculation usually starts by excit-

ing the mesh at specific points by voltage or current

impulses and follows the propagation of these impulses

over the mesh as they are scattered by the nodes and

bounce back at boundaries. Each iteration corresponds to

a unit time At required for a pulse to travel from one node

to the next. The output which is taken from a chosen point

is a series of discrete impulses of varying magnitude sepa-

rated by constant time intervals. This output function

corresponds to a discrete sampling of the E field or H

field (depending on the voltage or current) in the time

domain. The frequency response (within any frequency

range Al/ A much smaller than unity) can be obtained by

performing the discrete Fourier transform on the output

function. The TLM algorithm may be expressed as

,+l[v]r=sk[v]i +k[v]s

,+,[v]’=ck+l[v]’

(1)

(2)

where V’ and V’ are the incident and reflected impulses at

the ports around the nodes at time step k At, S is a block

diagonal scattering matrix for all nodes in the network, C

is a connection matrix describing the topology of the

network, and V’ is a source vector.

To account for dielectric losses, one can either consider

the TLM mesh to consist of lossy mesh lines or load the

nodes of a lossless mesh with so-called loss stubs [2], [3].

The latter approach has been adopted for our study, where

each node is resistively loaded with a matched transmis-

sion line of appropriate characteristic admittance go, ex-

tracting energy from each node at every iteration. The

values of go are directly proportional to the local loss

tangent and, for a lossy dielectric, can be derived as

follows :

(3)

The conductivity, u, of the medium and the equivalent

attenuation constant, a, of the mesh lines can be expressed

as follows:

gocc go

‘= Al
— Np/m

a= 4Alcr
(4)

where go is the normalized characteristic admittance of the

loss stubs (normalizing admittance being the characteristic

admittance of the main mesh lines) and Al is the distance

between nodes. The attenuation constant, a., of the net-

work is

go
an = Np/m.

2fiAlfi
(5)

The attenuation constant for dielectric losses can be writ-

ten as [8]

(6)
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Fig. 4. Configuration for computing the discrete numerical Green’s
function or Johns matrix of a lossy wa~eguide matched termination.

where A is the wavelength in the dielectric. From (5) and

(6), go follows:

2crfi~f Al tan 8
go=

c

If tan 8 and Al are known, g. can be

(7)

computed. The

frequency can be taken as the r&lband frequency since go

does not change very much across the operating band of

the waveguide. The only condition for (5) to (7) to be true

is that

a. Al <<l. (8)

The TLM discretization of a matched termination (of

Fig. 2) is shown in Fig. 4. Note that all boundaries are

placed halfway between nodes to ensure time synchronism

of impulses throughout the TLM mesh. The quantities gl

and gg are the characteristic admittances of the loss stubs

of sections 1 and 9, respectively. To satisfy the condition

given by (8) and to keep the velocity error to a tolerable

level, the width of the waveguide is discretized into 30 Al

(i.e., N= 30 in Fig. 4), and about 180A1 are needed along

the length to realize a WR28 waveguide matched termina-

tion (shown in Fig. 2(a)). The return loss obtained with a

TLM simulation is given in Fig. 3. A minimum of 32 dB is

obtained over the operating band of WR28 waveguide.

That means the reflections off the absorbing boundary

(input plane of the matched termination) are less than

2.5%. This proves the ability of the TLM method to

properly account for the losses. The results can be further

improved with finer discretization and more iterations.

B. Modeling of a Veiy Long Uniform Waveguide Section

In this approach, the wide-band termination is repre-

sented by a very long waveguide section, and computations

are stopped before the reflections from the far end return

to the reference plane. For exa~mple, for a computation

covering 2000 iterations, we need to discretize a waveguide
section which is 1000 Al long.

To compute the scattering parameters of a microwave

two-port over a wide frequency band in a single TLM run,

we need two absorbing boundaries, one at each port. If we

wanted to include the absorbing TLM structures described

above, the total additional length to discretize two absorb-
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ing boundaries using approach A would be about 400 AI,

while for approach B it would be about 4000A 1 (for a

computation requiring 4000 iterations). That means we

need enormous computer run time and memory to achieve

the above absorbing boundaries with the conventional

TLM algorithm. However, these problems can be solved

effectively with less computer resources by using diakop-

tics and space interpolation techniques as described in the

next section.

III. IMPLEMENTATION OF WIDE-BAND ABSORBING

BOUNDARY CONDITIONS WITH JOHNS’S

TIME-DOMAIN DIAKOPTICS APPROACH

A. Diakoptics Technique

Diakoptics (or segmentation) is a method of partitioning

large structures into substructures which are solved inde-

pendently and later reassembled. It is very attractive for

the repeated analysis of large structures in which only a

small subpart is changed from one problem to another.

For example, during the optimization of planar and quasi-

planar circuits, only the metallization part is changed, the

homogeneous dielectric regions remaining unchanged. It is

wasteful to analyze the entire structure every time a small

change is made.

The method was originated by Kron [9] and has since

been applied extensively in conjunction with frequency-

domain methods [10]–[12]. For example, complicated two-

dimensional planar components can be analyzed by seg-

menting them into regular shapes for which the analytical

Green’s functions are known. However, there are only a

few regular shapes, and these applications are thus limited

to certain standard regular geometries. The technique was

extended to the time domain for TLM modeling by Johns

and Akhtarzad in 1981 [13], [14]. They showed how the

substructures may be solved in the time domain using the

TLM method and how the reconnection is made. Since the

characteristic impulse response (which can be interpreted

as a numerical Green’s function) of the substructures must

be computed and stored, the extra dimension of time

associated with the TLM method vastly increases the com-

puter storage (when compared with steady-state problems).

To reduce the computational effort, Johns and Akhtarzad

proposed space approximations along the connecting inter-

face: they connected only a fraction of the TLM branches

in the interface. Using this space interpolation technique,

they computed the cutoff frequencies of simple waveguides

and ridge waveguides. Even though the computed values

compared reasonably well with analytical values, the fre-
sin(x)

quency response curve was no longer of — shape but

got distorted because of loss/gain of po;er during the

approximate connection process.

This shows that, even though the space-approximated

diakoptics may work reasonably well for computing eigen-

values, it may introduce considerable errors in the compu-

tation of scattering parameters. For this reason, and in

view of the comparatively large computer resources which

are required for this method, there was not much further

application of this technique.

Fortunately, the diakoptics technique can be made much

more efficient and accurate in the case of single-moded

transmission structures. Only a single removed branch in

the interface is connected, and the field values at the

remaining ports are interpolated according to the trans-

verse mode field distribution. This reduces the computer

storage and run time by a few orders of magnitude. These

procedures are described next.

B. Application to Wide-Band Absorbing Boundaries

We have used diakoptics to represent wide-band matched

terminations (shown in Fig. 4 and described in Section II)

at the input reference plane by their time-domain charac-

teristic impulse response or numerical Green’s function.

We then discretize only the circuit to be characterized and

convolve its time-domain response with the numerical

Green’s functions in the input and output reference planes

of the circuit.

The branches penetrating through the input reference

plane (also called removed branches) are numbered 1

through M = N (see Fig. 4). A single impulse injected at

any of these branches will cause impulses separated by the

iteration time interval to flow in streams out of the branches

of this structure. These impulse functions result from the

scattering at the nodes and boundaries of the structure,

and can be interpreted as a Green’s function in numerical

form. All removed branches are terminated in their own

characteristic impedance during this procedure so as to

absorb the emerging output streams. If we denote

g( m, n, k) as the output impulse function emerging at the

m th branch at t= k At due to a unit excitation of the n th

branch at t = O, the complete Green’s function for the

input plane of the matched load can be written in matrix

form as follows:

g(l,l,K). -- -g}l,~,K). -- -g(l,N,K)
/1 /1

g(l,l,t)- -:- -g}l,~,<)- -;- -g(l,N;k) i
/1 1 /11

g(l,l~O) -1- -g(l~n~O) --- -g(l~fi,O) I ~
t 11

,. --.1 ----1 1 r -g(m~N,K)‘1 I /.: ”---lI 1/, /1
I J/
I ~--.l. :/

--- --- --- -g(m~Nlk) ~
I /1 :/’;,/ ,,

m g(d,f,o) -’- - g(m,<O) -’-- g(i,fi,O) I I
(9)

+:;”
‘---- ;--- >~----~--g(M;N,K)

1

~~: : ~- -+<<-1- -g(M(l&
I
1
1/ 1/

g(ti,i,o) --- g(M,io) --- g(ti,fi,o)
/ k

—
n

This is a three-dimensional array of dimension

(M* N * K), where K is the total number of iterations,

and M = N is the number of branches or transmission

lines along the reference plane. We call this numerical

Green’s function a Johns matrix in honor of the late P. B.

Johns, pioneer of TLM and time-domain diakoptics [4].
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w

1“
M=N.
~ [Vr (m,k)] = [g(m,n,k’)~~’ (n,k’)]

n p/ ‘(n,k’)]
.

2

1 Sections of uniform
transmission lines

Input Reference Plane - Output Reference Plane

Fig. 5. Convolution of the Johns matrices of wide-band matched termi-
nations with the impulse response of the circuit.

Note that the above matrix is computed only once and is

stored. The next step is to discretize the circuit to be

characterized and convolve its time-domain impulse re-

sponse with these Green’s functions (which simulate the

wide-band absorbing boundary conditions in the time do-

main) along the branches of the input and output reference

planes (see Fig. 5).

When impulses are injected into the circuit, they are

scattered at nodes and boundaries and arrive after some

time at the input and output reference planes. Any impulse

which hits a reference plane will give rise to streams of

impulses (characteristic of the matched termination) sepa-

rated by the iteration time interval that will flow back into

the structure through all branches. For example, a series of

k impulses incident on the n th branch in the output

reference plane will give rise to the following reflected

impulse voltage on the m th branch:

Vr(m, k)= V’(n, k)*g(m, n,O)

+V’(n, k–l)*g(m, n,l)

+ . . . +V’(fz, O)*g(m, n,k). (lo)

This can be further written as follows:

V’(nz, k) = ~ g(m, n,k’)*Vz(n, k–k’). (11)
k’=0

The total reflected impulse voltage on the mth branch at

time kAt due to the impulses incident on all N branches

in previous iterations is the summation of the above term

for N branches:

Vr(m, k) = ~ f g(m, n,k’)*Vr(n, k–k’). (12)
n=l k’=0

The above equation forms the basis of the diakoptics

algorithm.

The TLM algorithms with and without the diakoptics

approach are shown in Fig. 6. Note the extra modules to

be implemented for convolution purposes with the diakop-

tics approach. The computer run time and memory re-

quired with the conventional TLM algorithm (i.e., to dis-

cretize the circuit and two matched terminations together)

is proportional to

(NX’+2XNX”’)XNXK (13)

I.Z&ad
+

I Excitation & start I r--

I ‘terations: ‘=1 I I ‘[—~
+

Implement lnter-
connect!ons & Boun-
daries: ~v$=ckvr

J
# ~

Implement Scatte-
ring at nodes

,Ivr= Skv’ +kv’

k = k+l
[k

Yes

H
k=l

mp emen
Convolution :

Vr=g. v ‘

6
E

k’=k’+l

If (k’ < k)
Yes

No
.—

w’==’=
Fig. 6. TLM algorithms with arid without diakoptlcs

while that with the diakoptics technique is

(NX’XNXK)+(K X( K+1)XN2) (14)

where NXC is the number of grids along the length of the

circuit and NX”’ is the number of grids along the length of

a matched load. In (14), the first term corresponds to the

discretization of the circuit and the second part to the

convolution with the Johns matrices of the matched loads.

The computer resources required for convolution can be

reduced if we take the input and output reference planes

far away from the circuit or discontinuity under test, so

that we can assume only dominant mode propagation

along the uniform guide (higher order mode effects on the

transverse field distribution can be neglected). In such

cases, if we excite the circuit at all the nodes along the

input reference plane with impulses whose magnitudes are

spatially distributed according to the dominant field distri-

bution, the reflected impulses from these nodes at any

iteration will have the same spatial distribution. Hence the

impulse response of a matched load can be represented

merely by storing the reflected impulse values at any one

node for the required number of iterations. By knowing

the transverse field distribution of the propagating mode

(e.g., sin(~x/a) variation for TEIO mode propagation in

waveguides), the reflected impulses at the other nodes can

be calculated from these values. Hence the Johns matrix

G(M, N, K ) becomes one-dimensional of size K, the total

number of iterations. Thus the memory size required to

store the Johns matrix is reduced by a factor of N 2 and

the time taken to compute the Johns matrix is reduced by

a factor of N, where N is the total number of branches

along the reference plane.
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Fig. 7. Return loss of back-to-back waveguide absorbing boundaries
computed with diakoptics: . approach A; — approach B.

Note that in the convolution algorithm, we compute the
reflected impulses (given by (12)) on all N branches along
the reference planes in every iteration. The number of
required computational steps is given by the second term
of (14). However, under the above assumption, we can
perform the convolution at only one node and calculate
the reflected impulses at all other branches according to
the spatial distribution of the dominant mode. Hence the
time and memory taken to convolve are reduced by a
factor of (Nz) and (14) becomes

(NX’XNXK)+ (KX(K+l)). (15)

Using the above technique, we have computed the re-
turn loss of the opposing absorbing boundaries (modeled
as described in subsections II-A and II-B) separated by a
length of WR28 waveguide (about 50 Al long). The return
loss obtained as 2010g( VSWR – 1)/(VSWR + 1) is shown
in Fig. 7. It is less than – 35 dB throughout the operating
band of the WR28 waveguide for approach A, while for
approach B it is less than – 30 dB, and the response is flat
as expected. The propagation constant, /3, can be obtained
by solving

EY(GJ, Z=LJ
~–rB(Q)(~2–G)=

EY(GJ,Z=L2)
(16)

where L1 and L2 are the distances from the origin to any
two points along the waveguide, and EY are the Fourier
transforms of E,(t) at z = L1 and z = L2. For the uniform
WR28 waveguide, these ~ values agree exactly with the
analytical values over the whole operating frequency band.
Also, the phase difference of fields between any two con-
secutive nodes along the length of the waveguide is the
same. This demonstrates the excellent quality of the wide-
band absorbing boundaries.

IV. APPLICATIONS

To further check the quality of the wide-band absorbing
boundary conditions and to verify the validity of the
proposed space interpolation techniques, we have com-

.0 30.0 34.0 38.0 42.0

Frequency(GHz)

Fig. 8. ,S parameters of an inductive waveguide iris: — computed
with diakoptics; OUA() computed by Marcuvitz [15].
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Distance(Al)

Fig. 9. Electric field variation along the length of a waveguide contain-
ing the inductive iris discontinuity at 40Al.

puted the S parameters of an inductive waveguide iris
discontinuity and an E-plane band-pass filter. The S pa-
rameters over the whole operating frequency band are
computed with two TLM runs—with and without the
discontinuity present. The incident field is obtained from
analysis of a small section of the empty waveguide termi-
nated on both sides with simulated wide-band matched
terminations. The reflected field is obtained from the dif-
ference between the total field and the incident field.

Fig. 8 shows computed magnitude and phase of the S
parameters of a symmetrical inductive iris (of gap width
equal to 3.556 mm) in a WR28 waveguide. Results com-
pare well with those computed using empirical formulas
given in [15]. The electric field variation along the center
line of the waveguide around the inductive iris is shown in
Fig. 9 for five different frequencies. Note a steep dip in the
magnitude of the electric field at the discontinuityy. The
fields become almost constant for all frequencies on the
ri~t-hand side of the discontinuity, indicating the excel-
lent quality of the matched loads. Fields vary sinusoidally
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2.4 mm 8.2 mm 2.4 mm

Fig. 10. The geometry of a two-section maximum flat E-plane filter.
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10.5 10.7 10.9 11.1 11.3 11.5

Frequency (GHz)

Fig. 11. Transmission characteristics of a E-plane filter: — 1s211

computed with diakoptics; . . . . S21 computed with diakoptics; A

1S21I computed with mode-matching technique (Uher); O S21 computed
with mode: matching technique (Uher).

towards the left side of the discontinuity, as expected.

Also, it can be seen that the higher order mode effect is

almost negligible beyond a distance of about 20 Al on

either side of the discontinuity.

Fig. 10 shows the geometry of a two-section maximum

flat band-pass filter [16] with the following specifications:

center frequency: 10.95 GHz

bandwidth: 218 MHz

guide width: 18.8 mm

strip thickness: 0.3 mm

The computed transmission characteristics are given in

Fig. 11. The results compare well with those computed

with the mode-matching technique.

V. CONCLUSIONS

Excellent wide-band waveguide absorbing boundary

conditions have been implemented using Johns’s time-do-

main diakoptics approach. A space interpolation technique

based on the dominant field distribution has been pro-

posed for efficient S-parameter extraction. The good accu-

racy of this technique and the quality of wide-band ab-

sorbing boundary conditions are documented by the good

agreement of the computed S parameters of waveguide
components with data obtained with other methods.
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